Free 2 day conference – fight the negative health & environmental impacts of freight transportation

Photo: Group photo from the 2016 MFN meeting in Portland

On October 13-14, 2017, more than 600 community leaders, advocates, scientists, and industry leaders will gather in Carson, California to confer, collaborate, and conspire to address the negative health and environmental impacts of freight transportation in communities. For two days, attendees at the 4th International Moving Forward Network conference will engage in panels and workshops to build power to advance an agenda for environmental justice and healthy communities

Low-income and communities of color across the U.S., particularly those near ports and freight corridors, bear the negative environmental and health burden of freight transportation, industrial pollution, and climate change.  Material goods are as close as a click away thanks to the global supply chain that relies heavily on ships, cranes, trucks, trains, warehouses, and practices that exploit and harm workers, communities, and the environment. The real cost of these material goods can be seen in the damaging health impacts of freight operations on millions of low-income communities of color that live near freight transport hubs and the surrounding environments. For example, deadly diesel emissions result from freight transportation has been recognized by the World Health Organization’s International Agency for Research as a known human carcinogen. Furthermore, freight operations are also responsible for the release of large amounts of greenhouse gases, such as carbon dioxide (CO2) which traps heat in the Earth’s atmosphere and contributes to global climate change.  

The Trump administration and fossil fuel industry has waged an assault on environment and health that roll back decades of hard fought policy that protect our air, water, and lands.  Efforts to repeal the Clean Air Act and the National Environmental Policy Act, dismantle the Clean Power Plan, slash the budget of the U. S. EPA, and exit the Paris Climate Accord, the strongest international climate and environmental protection agreement to date, will create deadly conditions for communities. It also marks the demise of a federal agenda that will no longer protect communities and environments affected by the goods transportation industry.

The 2017 4th International Moving Forward Network conference is a timely and important FREE two-day conference that will bring together community organizers, advocates, regulators, developers, industry representatives, planners, and policymakers to work on solutions to these critical problems and build power to change the political landscape.  Attendees will participate in discussions and strategy sessions as well as capacity building workshops in organizing, coalition and movement building, research, communications, social media, policy, and planning.

About the Network:

In 2010, The Trade, Health and Environment Impact Project (THE Impact Project) organized the third Moving Forward Together conference that drew more than 500 participants from 18 states and 5 countries.  It was at that conference that front line community residents and leaders, scientists and researchers, and labor, health, and environmental advocates envisioned a national network that would connect and support local and regional efforts to address the negative impacts of freight transportation in communities and build power to influence national policy. Seven years later, The Moving Forward Network has grown as a national network of community-based organizations, advocates, scientists, researchers, labor, environmental, faith-based organizations, and others committed to reducing the public health harms our country’s freight transportation system. Presently, the Network is comprised of over 40 organizations from across the country where large ports, rail yards and other freight corridors reside. The Network unites environmental justice organizations from around the United States to work on national campaigns, help build collective capacity through sharing of information and advocacy tools and seeks to elevate community voices through science, policy research and legal support. Here are key take aways from participants at the last Moving Forward Together Conference in 2010.  

“There is already technology that can be used to reduce diesel emissions”

“Direct action is effective. There is truly a global network of people fighting against freight transport” impacts

“Interconnections between labor, environment, freight, transit and possibility for working together

“The global impact of things going on in our neighborhoods.”

“The health impacts”

Join us in October to share your work, meet and learn from other leaders from across the country and around the world, and strategize together about achieving environmental justice and healthy communities for all of our places.

To find out more information about the conference go to www.movingforwardnetwork.com and click on the 2017 Conference tab.

About Conference

Program

Registration

Travel Information

Stipend Application

 

Particulate matter air pollution kills many elderly people in the U.S., even at levels the EPA considers ‘safe’

A study of over 60 million American seniors recently published in the New England Journal of Medicine shows that long-term exposure to particulate matter air pollution raises the risk of premature death of people over 65 years of age, even at levels well below U.S. Environmental Protection Agency (EPA) standards.  

In urban areas, diesel exhaust is one of the main sources of particulate matter, along with coal-fired power plants.

“We are now providing bulletproof evidence that we breathing harmful air.  It is very strong compelling evidence that currently, the safety standards are not safe enough.”  Francesca Dominici,  co-director of the Harvard Data Science Initiative.

The study, “Air Pollution and Mortality in the Medicare Population”, found that the risks of premature death were highest in men, low-income elders, and blacks, with blacks having mortality risks three times higher than the general population.

The study authors reported that lowering particulate matter air pollution in the U.S. by just 1 microgram per cubic meter would save 12,000 lives per year.  The current EPA annual average health standard for P.M. 2.5 is 12 micrograms per cubic meter.

Joel Schwartz, Harvard University professor of environmental epidemiology and the study’s senior author said “This study shows that although we think air quality in the United States is good enough to protect our citizens, in fact we need to lower pollution levels even further.”

To learn more, check out the excellent NPR audio news report or other references below. 

 Study: Even Low-Level Air Pollution Kills the Elderly, Medpage Today

60-Million-Strong Study Shows Clear Link Between Exposure To Air Pollution & Premature Death, CleanTechnica

Air Pollution and Mortality in the Medicare Population, New England Journal of Medicine

New Harvard Study: There is No “Safe Level” of Exposure to Smog or Particulate Matter. Downwinders at risk

Success stories show why weakening the National Environmental Policy Act would harm America

The National Environmental Policy Act (NEPA) requires that government agencies understand the environmental, health, and other impacts of their actions before they spend our tax dollars, and that the American public be involved and informed. NEPA is designed to ensure that agencies analyze risks and alternatives, and make decisions based on the facts. NEPA studies have improved decision making, prevented many misguided and ill-informed actions, and saved untold numbers of American lives.

Unfortunately, NEPA is under attack by the Trump Administration and the Congress. Donald Trump recently called NEPA studies, “nonsense’, and is proposing to weaken NEPA protections.  These two articles provide a good snapshot of the challenges NEPA faces:

Conservatives pitch environmental rollbacks in highway package, E&E News (June 19)

To Speed Up Infrastructure Projects, Trump Revisits Environmental Regs, Governing (March 13)

NEPA is not ‘nonsense’. NEPA studies have led to better government decision-making that has protected our environment, prevented the Federal government from spending money on ill-conceived projects, and improved the health and safety of virtually every American citizen.  

While NEPA does not guarantee that agencies make the right choices, NEPA processes give them the information to make better decisions – and sometimes to avoid disaster.

Among the many NEPA success stories are the protection of radioactive wastes at Los Alamos National Laboratory from vulnerability to fire that could have spread radioactivity for hundreds of miles when a recent forest fire overran the lab, and the abandonment of a misguided plan to dredge a pristine lagoon – an action that would have cost over $100 million and damaged the lagoon it was intended to protect.

To learn more about the amazing success of the NEPA process, check out these stories.

Trump trashes environmental studies but they stave off disaster, The Hill

Never Eliminate Public Advice: NEPA Success Stories, NRDC 

NEPA Success Stories, Henry M. Jackson Foundation

mark! Lopez of EYCEJ wins Goldman Environmental Prize!

Photo: Courtesy EYCEJ: Mark! Lopez, Dr. Robert Bullard, Taylor Thomas, and Zully Juarez

mark! Lopez, executive director of MFN member East Yard Communities for Environmental Justice (EYCEJ) was awarded the 2017 Goldman Environmental Prize yesterday.

mark! is a third generation resident of East L.A, and member of a family with a long history of community activism.  His grandparents cofounded Madres del Este de Los Angeles Santa Isabel (Mothers of  East LA Santa Isabel – MELASI), and he has continued that tradition through years of work with the EYCEJ.

The Goldman Environmental Prize is widely viewed as the highest environmental accolade possible.  It “honors grassroots environmental heroes from the world’s six inhabited continental regions: Africa, Asia, Europe, Islands & Island Nations, North America, and South & Central America” for “sustained and significant efforts to protect and enhance the natural environment…”

To learn more, check out the video and linked news articles below, and read about his award at The Goldman Environmental Prize.

Congratulations mark! Lopez!!

Estadounidense Mark López gana el premio ambiental Goldman 2017 por liderar lucha contra la contaminación de plomo y arsénico en Los Ángeles, Univision

 Goldman Environmental Prize winners work hard to protect planet, SFGate

Margaret Gordon and other EJ speakers at Oakland Voices for Trade Justice: A NAFTA Town Hall – April 20

One of the founders of the Moving Forward Network and most accomplished EJ activists in the U.S., Margaret Gordon, is going to speak on Thursday, April 20 in Oakland about the pollution caused by freight transportation in communities of color, and share lessons learned on how to improve community health.  Her presentation and talks by three other outstanding speakers makes this a “must-attend” event.  Sign up today!

Received by email:

ANNOUNCED! Youth, Public Health, Enviro Justice Speakers @
4/20 Oakland Voices for Trade Justice: A NAFTA Town Hall 

 CaptureWe’re excited to announce a powerful line-up of multi-generational speakers at our April 20 trade justice forum, including activists from the immigration rights, youth, environmental justice, and public health communities.

 

“Migration is Beautiful” butterfly graphic courtesy of Favianna Rodriguez.

RSVP Today! Don’t miss these dynamic presenters:

  • Margaret Gordon, a veteran African-American environmental justice organizer with the West Oakland Environmental Indicators Project. She’ll speak to the pollution impacts of trade-related freight transport through low-income communities of color and share about opportunities to improve community health.

  • Joell Echevarria, an African-American youth social justice organizer with Hip Hop for Change and Rooted in Resilience. He will speak on the economic insecurity faced by young adults of color in Oakland.

  • Gerardo Omar Marín, who serves as Co-Director of Rooted in Community and Youth Program Director of The Pollination Project. Rooted in traditional Mexican healing art, agriculture, and music, Gerardo has dedicated his service to boost the power and unity in inter-cultural youth, social justice, and Mother Earth and will speak to the impacts NAFTA has had on Mexico.

  • Malinda Markowitz, Co-President of the California Nurses Association, the state’s premiere organization of registered nurses and a leading advocate of guaranteed healthcare by expanding and updating Medicare to cover all Americans. Malinda will speak about the threats to affordable medicines posed by new monopoly patents that corporations are seeking through new trade schemes.

EVENT SUMMARY: NAFTA has failed people across North America, and unless working people and communities are at the table, Trump’s renegotiation plans could make it even worse. Join the California Trade Justice Coalition for an engaging discussion of the devastating impacts NAFTA has had on workers, migrants, and the environment, hear from local leaders fighting for economic justice, and learn how we can take action to make sure NAFTA renegotiations truly benefit people and the environment.

WHERE: Citizen Engagement Lab, 1330 Broadway, 3rd Floor, Oakland

WHEN: Thursday, April 20th from 6:00 – 8:00 pm

RSVP: Click here to secure your spot!

Cosponsors: California Nurses Association, California Trade Justice Coalition, Citizens Trade Campaign, Friends of the Earth, Global Exchange, Rooted in Resilience, Sierra Club, California Labor Federation

Toward a more just, vibrant, and sustainable future for us all,

Aaron Lehmer-Chang
Director
California Trade Justice Coalition
A Citizens Trade Campaign affiliate
Will Wiltschko
Lead Organizer
California Trade Justice Coalition
A Citizens Trade Campaign affiliate

 More About California Trade Justice News & Alerts

California Trade Justice News is a quarterly publication of the California Trade Justice Coalition (CTJC), a project of Earth Island Institute, and proud affiliate of the Citizens Trade Campaign. The CTJC is a new coalition of labor, environmental, family farm, public health, immigrant rights, human rights, pro-democracy, and socially conscious business leaders — all committed to building a strong California economy that works for all.

PUBLISHER: Aaron Lehmer-Chang, ED

CONTRIBUTORS: Will Wiltschko, Lead Organizer, Jake Soiffer, Social Media & Communications Intern

Like us on Facebook! | Follow us on Twitter! | Support our efforts today!

CONTACT INFO:

California Trade Justice Coalition
436 14th Street, Suite 1216
Oakland, CA  94612
Web: www.catradejustice.org

Learn how your group can implement community- based air quality monitoring: article + webinar on August 24

This is an excellent article written by Luis Olmedo and Humberto Lugo of MFN member organization Comite Civico Del Valle, and others.  Check it out and consider – could this be a roadmap for your community group? 

 To learn more, register for the Community-Based Air Monitoring Webinar to be held on Thursday, August 24 from 12:30 to 2:00 p.m. EDT 

 

 Source: Environmental Health Perspectives, July 2017 

The Imperial County Community Air Monitoring Network: A Model for Community-based Environmental Monitoring for Public Health Action

Paul B. English,1 Luis Olmedo,2 Ester Bejarano,2 Humberto Lugo,2 Eduardo Murillo,2 Edmund Seto,3 Michelle Wong,4 Galatea King,4 Alexa Wilkie,4 Dan Meltzer,4 Graeme Carvlin,3 Michael Jerrett,5 and Amanda Northcross6

PDF icon PDF Version (723 KB)

  • Abstract

  • About This Article

    SUMMARY

    The Imperial County Community Air Monitoring Network (the Network) is a collaborative group of community, academic, nongovernmental, and government partners designed to fill the need for more detailed data on particulate matter in an area that often exceeds air quality standards. The Network employs a community-based environmental monitoring process in which the community and researchers have specific, well-defined roles as part of an equitable partnership that also includes shared decision-making to determine study direction, plan research protocols, and conduct project activities. The Network is currently producing real-time particulate matter data from 40 low-cost sensors throughout Imperial County, one of the largest community-based air networks in the United States. Establishment of a community-led air network involves engaging community members to be citizen-scientists in the monitoring, siting , and data collection process. Attention to technical issues regarding instrument calibration and validation and electronic transfer and storage of data is also essential. Finally, continued community health improvements will be predicated on facilitating community ownership and sustainability of the network after research funds have been expended. https://doi.org/10.1289/EHP1772 

Introduction

Communities and regulatory agencies are discovering the utility of small, low-cost environmental sensors that are able to provide real-time information on air pollution (Jiao et al. 2016Snyder et al. 2013Yi et al. 2015). These sensors hold great promise for individuals, communities, schools, and other interested parties by providing timely information that can supplement regulatory data used to reduce toxic exposures and influence environmental health policy and programs. Using these new technologies presents challenges in ensuring scientific validity of the data and visualizing and communicating scientific information in a comprehensible manner.

The Imperial County Community Air Monitoring Network (the Network), one of the largest community-based air monitoring networks in the United States, is an innovative model that addresses these challenges through a community, academic, nongovernmental, and government partnership that integrates knowledge and priorities from community and academic research perspectives. In this community-engaged process, community members play key roles in determining study design, siting and deploying monitors, and data collection. The Network is now producing real-time particulate matter data from 40 low-cost sensors throughout the county.

 Background

 A Community Affected by Air Pollution

Imperial County in southern California is home to a primarily Latino population (82%) and has some of the highest rates of unemployment and poverty in the nation (U.S. Census 2010). The county is mainly desert and agricultural, with a range of air pollution sources—such as field burning, the U.S.–Mexico border crossing, unpaved roads, and various industrial facilities—that contribute to periods lasting longer than 6 months when Imperial County exceeds the California standard for particulate matter (PM) with an aerodynamic diameter of 10 μm or less (PM10) (CARB 2012). Historically, Imperial far surpasses all other California counties as having the highest rates of both emergency hospital visits and hospitalizations for asthma among school-age children (CEHTP 2017). El Centro, California, located in the Imperial Valley, is the city with the fifth-worst air quality in the U.S. (ALA 2016). Exposure to PM10 is associated with increased respiratory disease, decreased lung function, and asthma attacks in susceptible individuals (Anderson et al. 2012). According to the California Air Resources Board, in 2015, the last year in which data were available, the Salton Sea air basin, where Imperial County is located, had 128 d that exceeded the state standards for PM10(https://www.arb.ca.gov/adam/topfour/topfour1.php). This finding means that, for more than one third of the year, residents may be at risk of breathing outdoor air that exceeds the maximum amount of PM that would not harm public health. Even when air quality is within state standards, the health of the population will likely suffer, as arguably no health threshold level exists for PM; for example, an analysis of daily time series data for the 20 largest U.S. cities for 1987–1994 found no threshold for particulate air pollution on daily mortality (Daniels et al. 2000), and Vaduganathan et al. found that increased levels of PM10, even below the current limits set by the European Union, were associated with excess risk for admissions for acute cardiovascular events (Vaduganathan et al. 2016).

 Community Needs for Local-level Air Quality Information

Governmental regulatory air monitors are designed to measure ambient air in communities to ensure that federal and state air-quality standards for the protection of public health are met. However, regulatory monitoring does not have the spatial resolution to provide information to the public in the specific communities where they live, work, and play. Further, regulatory monitors are not designed to report on episodic elevated events (i.e., high-concentration events may be qualified as “exceptional events” and removed from regulatory consideration), which are of concern to communities due to acute health events that occur during peak concentrations.

These limitations play out in Imperial County, where understanding, awareness, and effective response to air pollution trends have been hindered by the fact that there are only five regulatory PM monitors for a county that spans over 4,000 square miles and is home to 175,000 individuals. Residents have noted that these monitors often do not seem to reflect the air quality in their local communities, voiced concerns that the monitoring data are sometimes not displayed during elevated events, and identified the need for more air monitors.

 Opportunities with Next Generation Air Sensor Technology

Recent advances in small portable and personal air monitors or sensors, which are low cost in comparison with conventional monitors, potentially may provide higher temporal and spatial resolution of air quality data than currently exists from regulatory networks (Jerrett et al. 2015Duvall et al. 2016Han et al. 2017Jovašević-Stojanović et al. 2015Volckens et al. 2016). The accessible cost, ease of use, and improving accuracy of these technologies position them to play an important role in efforts by communities and researchers to identify sources and trends in air quality that may inform policies and plans to reduce emissions and exposures. Both personal and community responses to these new data can be important public health actions that may emerge from monitoring.

To address community concerns about air quality, a collaborative of community, academia, nonprofit, and government partners formed the Imperial County Community Air Monitoring Project (the Project). Funded by the National Institute for Environmental Health Science’s Research to Action Program, the Project used an innovative approach to facilitate community participation and decision-making throughout the development and deployment of the Network and to address concerns about scientific validity and sustainability.

 Project Partnerships and a Community Engagement Structure

A crucial component of our approach was to establish an equitable and inclusive community engagement structure that ensured participation at multiple levels throughout the project by various community representatives. The initial step of identification of study partners occurred naturally through a long-standing relationship between Comite Civico del Valle (CCV), a community-based organization in Imperial County, and the California Environmental Health Tracking Program (CEHTP), a program of the nongovernmental Public Health Institute, in collaboration with the California Department of Public Health. The third main study partner, the Seto research group at University of Washington (UW), was identified through relationships with CEHTP, as were other academic partners affiliated with University of California at Los Angeles and George Washington University, who served in an advisory capacity. Distinct roles for the partnering organizations were established from the start. CEHTP provided epidemiological, community engagement, health education, and project-management expertise. UW provided exposure assessment expertise, equipment customization and assembly, and monitor-operation and validation capabilities. CCV provided local community knowledge and relationships and community outreach and organizing expertise, and CCV was ultimately responsible for interfacing with monitor sites and maintenance of the monitoring network. UCLA provided expertise to the community and academic partners on the health effects of air pollution, and George Washington University provided technical consultation on the monitoring of ambient particles.

The project engaged with residents in Imperial County via the establishment of a Community Steering Committee (CSC), recruitment of community participants to help site monitors, and identification of local sites to serve as hosts for the air monitors. The CSC—composed of local leaders and residents concerned about the environment—worked with the Project staff on all aspects of study design and implementation, provided feedback on data communication, and participated in the development of actions to reduce exposures and pollution sources. Government regulatory agencies (in this case, the local air pollution control agency, the California Environmental Protection Agency (California EPA), and the U.S. Environmental Protection Agency (U.S. EPA), were engaged through participation on a Technical Team, composed of local government, academic, and other technical experts. The technical team was convened semiannually to provide technical advice and expertise on the exposure assessment methodologies and calibration results. Government agencies were contacted to provide portable reference monitors for co-location studies, to provide technical assistance to communities and the researchers, and to receive feedback on community needs.

 Defining the Goals for Community Air Monitoring

Components of establishing a community-based air monitoring network are shown in Figure 1. Because it was essential to have an established research question or surveillance need to guide the Project’s activities, this was determined at the start with partners to ensure responsiveness to community needs. The study partners defined broad goals for the Network that included the ability to use the air monitoring data to inform community members about air quality in real time, as well as to generate data that are appropriate for conducting spatial analysis to identify air pollution hot spots and trends. We also continued to refine the goals by incorporating priorities of the CSC and community participants, determined through individual key informant interviews and group discussions to learn about community air quality information needs, uses, sources, and barriers. In turn, these goals provided guidance as we designed the Network and prepared to share monitoring data with the community. In this manner, the study protocol was developed with significant input from the community partner. Furthermore, at that time, the project partners and CSC helped to develop a project-evaluation plan to assess how well these goals were achieved. The evaluation plan included surveys of CSC members, community participants, and other users of the air monitoring data; web analytics; and key informant interviews of project partners.

Flowchart.
Figure 1. Components of establishing a community-based air monitoring network.

 Preparing the Network Equipment and Data Collection Infrastructure

The monitor selected for this study, a modified Dylos DC1700 (Dylos Corporation), was tested in the lab and field for limits of detection, responses to particles of varying composition, ability to accurately size particles, and precision between multiple monitors at multiple field sites with different environmental conditions, such as temperature and humidity. The Dylos is a light-scattering particle counter, and as such, particle counts were converted to mass concentrations to align with health recommendations that are usually based on the latter. Algorithms to convert counts to mass were developed based on co-location of the instruments with government reference instruments in the region, modeling the relationship between counts and mass and using this relationship to estimate mass concentrations. The monitor system included the Dylos particle sensor with four size bins (>0.5 μm, >1.0 μm, >2.5 μm and >10 μm), temperature and relative humidity sensors, and a microcontroller to allow wireless real-time data transfer to the Internet. The monitor components were housed in a box with a cooling fan to sustain optimal sensor performance under Imperial County’s harsh summer conditions (Figure 2).

Photograph.Figure 2. Air monitor system including modified Dylos particle sensor with four size bins (>0.5 μm, >1.0 μm, >2.5 μm and >10 μm), temperature and relative humidity sensors, and a microcontroller.

Monitors were validated and calibrated with reference monitors. In our case, the California EPA participated by providing access to their Calexico, California, site, where they operate federal reference and federal equivalent methods for measuring PM, as well as co-locating portable Beta-attenuation particulate matter monitors at sites that we selected for our community air monitors. Additionally, data collection and data transfer protocols were established, along with quality control plans. This process included addressing issues such as establishment of data feeds, data averaging over time, and data completion checks, as well as formatting data for display and hosting the Web services that allow the public to view the data in real time.

 Designing and Deploying the Network

Monitor siting was accomplished by having community members identify, collect data about, and prioritize potential monitor locations in impacted communities throughout the county. The participants in this prioritization process included the CSC and additional community residents who were recruited for this aspect of the project. To facilitate these community members’ meaningful participation in the monitor siting process, the project team provided basic training in air monitoring science, including explanation of technical criteria (e.g., electrical power availability, wireless connection capability, absence of obstructions, secure location) for monitoring siting. This community-engaged process was used to identify locations for the first 20 monitors. An iterative process was used in which monitoring data from the first set of 20 monitors helped determine sites for the second set. The selection of the second 20 monitor locations was guided by the research staff, with input from the CSC, to ensure that monitors were located in areas where a spatially representative model could be constructed using land use regression techniques (Briggs et al. 1997). CCV played a critical role in recruitment of monitor hosts. CCV staff members were also trained to deploy the monitors and conduct routine maintenance and troubleshooting.

 Producing Community-relevant and Accessible Information

Researchers and the community members discussed which air quality measures were most useful and how the data would be visualized and communicated to the public. The CSC was presented with several options for data presentation to determine the most understandable and useful approach. The existing community website and data platform titled Identifying Violations Affecting Neighborhoods (IVAN) was redesigned and built out to include the data from the Network, called IVAN Air Monitoring (IVAN-Imperial.org/air). The Project staff developed messaging about interpreting the data, information on air quality and health, and technical information on the monitors and pollution levels, which is also posted on the IVAN website.

 Moving Data to Action

Ultimately, the goal of the Network is to provide data and information to community residents to help them engage in individual and community actions to improve health. CCV has extensive knowledge and expertise in outreach, education, advocacy, and organizing. By involving the CSC and other community residents throughout the Project, CCV was more readily able to engage them in ongoing actions than in the past. To support the deployment and utilization of the Network, the Project team developed a two-phase public health action-planning process in which the CSC and other community participants were trained in community action planning strategies, identified and prioritized public health concerns, and developed action plans to address those concerns. With the completion of the Network, the second phase of public health actions will focus specifically on air quality, which may include actions such as outreach to school communities about air quality and health; devising plans for schools to shelter in place during a poor-air-quality days, especially for students with asthma; sharing data trends with local officials to advocate for regulatory action; and training schools with a community monitor to use a flag system to notify the school community about the current air-quality level.

 Ensuring Sustainability

This Network was designed from the outset to be community owned and operated, which will require that the community has the resources, knowledge, and capacity to sustain it. A critical component of supporting an ongoing network is the operation and maintenance of the monitoring equipment, as well as upgrading of software and hardware as needed. As part of ongoing project activities, CCV staff has already received training and assumed responsibility for monitor installation, as well as in troubleshooting monitor hardware and software issues. Furthermore, although technical expertise from a consultant on retainer can provide periodic review to ensure the scientific accuracy of the project, the Network should not have to rely on external technical infrastructure. For example, project data were initially stored on UW data servers but have now been migrated to a cloud service provider so that ownership of the data and the server software may be transferred to the community before the conclusion of the initial grant. This step is critical to ensure sustainability of the program and accessibility of the data after the grant funding period ends. Finally, a key component of sustainability is the continuation of community action planning and community-training activities. The CSC provides an existing structure through which community members can participate directly in the outreach, dissemination, and use of air monitoring data in the broader community. CCV and the CSC can also play a role in community-member mentoring, so that the next generation is interested and prepared to operate the Network.

Who should financially sustain a community-based air monitoring network? Although the community will own the Network and has an interest in its continued operation, they have limited access to funding streams and few available resources. Government agencies may be motivated to maintain and ensure quality data from such projects, as these data help fulfill their mission to provide useful data for community members and can supplement information from regulatory monitors. One example in California is the California Air Resources Board’s Supplemental Environmental Project Policy (available from a file linked at https://www.arb.ca.gov/enf/seppolicy.htm). This policy “allows community-based projects to be funded from a portion of the penalties received during settlement of enforcement actions.” Policies like these can provide some continued support for air monitoring network sustainability.

 Best Practices

Several main themes emerge from this project that can be applied to other settings. First, a clearly defined purpose for monitoring must exist, with an understanding of how data may inform action. Roles and responsibilities of all study partners need to be clear from the onset; if this is done correctly, it will ensure that critical functions are covered and adequately funded, it will manage expectations and avoid miscommunication, and it will identify opportunities for knowledge transfer and capacity building. The community, researchers, and government agencies all have an important role to play, and the project resources should be equitably distributed among them. Scientific information must be presented in an accurate and accessible manner and tailored to the cultural and socioeconomic attributes of the community in question. Data must be understandable and useful for the public to apply in public health campaigns. Next-generation environmental monitors, although relatively easy to install, should not be considered reliable and accurate without rigorous calibration and testing; monitors later may experience technical issues, such as connectivity problems that may affect data completeness. Further, due to dust accumulation on the lens of the particle counter, measurement drift can occur over time; therefore, a regular maintenance schedule is essential. In addition, sustaining a project after dedicated funding ends is difficult; therefore, emphasis on community involvement and training during the project period, as well as novel fundraising and interest from regulatory agencies, can ensure that the project continues to collect useful data into the future.

 Conclusion

Current availability of real-time and neighborhood-scale data on PM levels can be used as an agent of change. Residents are now equipped with data that they can use to better identify when and where residents are safe outside; to change personal behaviors to reduce exposures; and to advocate for policy changes that more aggressively reduce PM sources. Community engagement and uses of citizen science are becoming more common in influencing public health practice (Den Broeder et al. 2016). In Imperial County, we have emphasized the importance of the development of a sustainable air-monitoring network that is community owned and operated and producing data that are valid for community and traditional research. The project has increased community knowledge and capacity about the process required to set up and maintain monitors, and community partners are now empowered to initiate and collect air data for themselves. With this new information, understanding, and capacity, the community is better prepared to engage and collaborate with government around air monitoring and policy than in the past. Increased availability of actionable independent data and technical capacity to operate the hardware and software network components allow residents to have greater control over their lives and enhance the health of their community members.

Acknowledgments

Research reported in this publication was supported by the National Institute of Environmental Health Sciences of the National Institutes of Health under Award Number R01ES022722. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

References

ALA (American Lung Association). State of the Air. 2016. http://www.lung.org/our-initiatives/healthy-air/sota/ [accessed 13 February 2017]

Anderson JO, Thundiyil JG, Stolbach A. 2012. Clearing the air: a review of the effects of particulate matter air pollution on human health. J Med Toxicol 8(2):166–175, PMID: 2219419210.1007/s13181-011-0203-1.

Briggs DJ, Collins S, Elliott P, Fischer P, Kingham S, Lebret E, et al. 1997. Mapping urban air pollution using GIS: a regression-based approach. Int J Geogr Inf Sci 11(7): 699–718, 10.1080/136588197242158.

CARB (California Air Resources Board). 2012. Air Quality Trend Summaries, http://www.arb.ca.gov/adam/trends/trends1.php [accessed 13 February 2017]

CEHTP (California Environmental Health Tracking Program) () 2017. http://www.cehtp.org[accessed 13 February 2017]

Daniels MJ, Dominici F, Zeger SL, Samet JM. 2000. Estimating particulate-matter mortality dose-response curves and threshold levels: an analysis of daily time-series for the 20 largest US cities. Am J Epidemiol 152(5):397–406, 10.1093/aje/152.5.397.

Den Broeder L, Devilee J, Van Oers H, Schuit AJ, Wagemakers A. 2016. Citizen science for public health. Health Promot Int Dec 23. pii: daw086, 10.1093/heapro/daw086.

Duvall RM, Long RW, Beaver MR, Kronmiller KG, Wheeler ML, Szykman JJ. 2016. Performance evaluation and community application of low-cost sensors for ozone and nitrogen dioxide. Kolev SD, ed. Sensors (Basel). 16(10):1698, 10.3390/s16101698.

Han I, Symanski E, Stock TH. 2017. Feasibility of using low-cost portable particle monitors for measurement of fine and coarse particulate matter in urban ambient air. J Air Waste Manag Assoc 67(3):330–340, PMID: 2769028710.1080/10962247.2016.1241195.

Jerrett M, Reid CE, McKone TE, Koutrakis P. 2015. Participatory and ubiquitous sensing for exposure assessment in spatial epidemiology. In Spatial Analysis in Health Geography. Kanaroglou P, Delmelle E, Paez A eds. Farnham, UK:Ashgate Publishing Ltd.

Jiao W, Hagler G, Williams R, Sharpe R, Brown R, Garver D, et al. 2016. Community Air Sensor Network (CAIRSENSE) project: evaluation of low-cost sensor performance in a suburban environment in the southeastern United States. Atmos Meas Tech 9(11):5281, 10.5194/amt-9-5281-2016.

Jovašević-Stojanović M, Bartonova A, Topalović D, Lazović I, Pokrić B, Ristovski Z, et al. 2015. On the use of small and cheaper sensors and devices for indicative citizen-based monitoring of respirable particulate matter. Environ Pollut 206:696–704, 10.1016/j.envpol.2015.08.035.

Snyder EG, Watkins TH, Solomon PA, Thoma ED, Williams RW, Hagler GS, Williams RW, Shelow D, et al. 2013. The changing paradigm of air pollution monitoring. Environ Sci Technol 47(20):11369–11377, 10.1021/es4022602.

U.S. Census. 2010. U.S. Census Bureau Quick Facts. Imperial County. http://www.census.gov/quickfacts/table/PST045215/06025,0636294,00 [accessed 13 February 2017]

Vaduganathan M, De Palma G, Manerba A, Goldoni M, Triggiani M, Apostoli P, Dei Cas L, et al. 2016. Risk of cardiovascular hospitalizations from exposure to coarse particulate matter (PM10) below the European Union Safety Threshold. Am J Cardiol 117(8):1231–1235, PMID: 2697679310.1016/j.amjcard.2016.01.041.

Volckens J, Quinn C, Leith D, Mehaffy J, Henry CS, Miller-Lionberg D. 2016. Development and evaluation of an ultrasonic personal aerosol sampler. Indoor Air. 27(2):409–416, 10.3390/s16101698.

Yi WY, Lo KM, Mak T, Leung KS, Leung Y, Meng ML. 2015. A survey of wireless sensor network based air pollution monitoring systems. Sensors (Basel) 15(12):31392–31427, 10.3390/s151229859
.

Port of Oakland air pollution violates the civil rights of the community – Feds to investigate

 

Photo: CHRIS JORDAN-BLOCH / EARTHJUSTICE

Many of the effects of diesel exhaust and other traffic-related air pollution are known and widely accepted  – including cancer, cardiovascular disease, and triggering of asthma attacks. In addition, studies have shown that the more air pollution a person is exposed to, the more likely they are to suffer from many other maladies and illnesses, including premature birth, autism, Alzheimer’s and Parkinson’s diseases, and cognitive decline.

To top it off, a study of 60 million adults release just a couple of weeks ago shows that Particulate matter air pollution kills many elderly people in the U.S., even at levels the EPA considers ‘safe’.

And study after study has shown that the people most often subjected to high levels of air pollution are disproportionally poor and non-white.  

Residents of West Oakland, California know all of this from first-hand experience.  Residents of this port community, who are predominately black and Latino, are exposed to much more air pollution than richer and whiter residents just a few miles away. West Oakland has 90 times more diesel pollution per square mile on average than the rest of California, resulting in high levels of asthma and other diseases known or suspected to be caused by air pollution.

After fighting for decades to make their communities safer and being ignored all too often by local government, West Oakland residents have made it clear they are not going to take it anymore.  In April, Moving Forward Network members West Oakland Environmental Indicators Project (WOEIP) and Earthjustice teamed up to file a federal civil rights complaint demanding that the Federal government provide them the same levels of protection as people in whiter, richer communities, specifically when making decisions concerning the Port of Oakland the Oakland Army Base redevelopment project.

 “Time and time again, both the city and port have dismissed the consistent input and opposition to their actions from directly impacted West Oakland residents, nearly 80 percent of whom are people of color,” 

The complaint says the city has engaged in a “pattern of neglect and systemic disregard” for the health and well being of West Oakland residents, which will only get worse as the city redevelops the former Oakland Army base. And, it alleges the port’s continuous expansion of maritime activities has consistently failed to incorporate adequate measures to mitigate the elevated pollution levels. The complaint asked that the two Federal agencies that provide the funds and approvals for port projects put measures in place to protect them.  

This week, the agencies sent this letter to the City and Port of Oakland stating that they will investigate the complaint.

For more information, check out the resources below, and stay tuned for more news as it develops.

Community group alleges civil rights violations by the city and port of Oakland in complaint to Federal government, Earthjustice

When pollution discriminates: Feds to investigate alleged civil rights violations in West Oakland, Mercury News

A black community in Oakland says pollution is violating its civil rights, Grist

This army base once drove West Oakland’s economy. Now it drives discrimination, Grist

Coalition for Healthy Ports shows dirty diesel trucks are killing residents; demands reinstatement of plan to ban the dirtiest trucks

Photo: Edited image from the Village Voice

The Coalition for Healthy Ports NY NJ, which includes Moving Forward Network members Clean Water Action and the Ironbound Community Corporation, as well as the International Brotherhood of Teamsters union and faculty of the Rutgers School of Public Health, released a very informative report yesterday, and called for the Port Authority of New York and New Jersey to reinstate a planned ban on dirty diesel trucks manufactured before 2007.

Unless ports set healthier standards, economic pressures generally lead to the use of the very oldest and dirtiest trucks on the roads to haul freight from ports to warehouses, and this problem is exacerbated in and around the Ports of New York and New Jersey by a huge amount of trucking through neighborhoods around the ports.  

Diesel exhaust causes a host of diseases, including cancer and strokes, and triggers dangerous and sometimes deadly asthma attacks.  Diesel exhaust has been strongly linked to many other diseases, including many serious neurological problems, though the science is not yet advanced enough to prove causality.  Just this week a study of 60 million Medicaid recipients showed that the more particulate matter a person is exposed to, the more likely they are to die prematurely.  In urban areas, diesel exhaust is the primary source of particulate matter.

The Coalition’s report showed that residents throughout their eight-county study area face an increased risk of premature death due to the failure of the Port Authority of New York and New Jersey to ban the dirtiest diesel trucks, including residents who live far from the port.  For more information, see the original report or news articles linked below.

Complete report

Evaluation of the Port of New York & New Jersey Clean Trucks Program Rollback

 More information on the study and demands to reinstate the ban on old trucks

Coalition Urges Port Authority to enforce old diesel truck ban, NJ.com

NY-NJ under pressure to revive ban on older truck engines, Journal of Commerce (Free subscription required)

 Air pollution and health

There Is No ‘Safe’ Level Of Pollution — Even Small Amounts Lead To Premature Death, Kaiser Health News

West Oakland Environmental Indicators Project research reveals dangerous pollution hotspots

As the Moving Forward Network members that do air pollution monitoring know from on-the-ground experience, EPA regulatory air monitors may show an area to have low levels of particulate matter from diesel exhaust and other air pollution when in fact, nearby hot spots can have high and dangerous levls of air pollution.

For example, while the city’s only EPA regulatory monitor showed air was relatively clean, monitoring by the Diesel Health Project around the BNSF Argentine Rail Yard in Kansas City, Kansas revealed dangerous levels of elemental carbon (an indicator of Diesel Exhaust pollution) in nearby resident’s yards, very likely from a nearby locomotive maintenance yard at which as many as 50 locomotives at a time, many running, await load testing.

Currently, measuring air pollution in overburdened neighborhoods at a high enough level of granularity to comprehensively identify hot spots is very difficult and expensive, and beyond the capabilities of most environmental justice and other community organizations.  

However, research published this week shows how this can be done – and that the results are of great value.  A study carried out by MFN member West Oakland Environmental Indicators Project (WOEIP), the Environmental Defense Fund, Aclima, and the University of Texas at Austin using data collected by Google Street View cars produced findings that were concerning and surprising.

Most significantly, the data shows pollution variations within single blocks in Oakland of as high as 5X, and revealed hotspots that were often very persistent and stable.  

The wide range of pollution levels and the persistence of hotspots tells us something else – in many cases workers and residents are being exposed to much higher levels of pollution and hence higher health risks than they or anyone else knows. We need to build on this research to develop the capability of community-based groups to conduct this level of monitoring in overburdened neighborhoods throughout the U.S.  There are children growing up in these neighborhoods who will sooner or later suffer from underdeveloped lungs, asthma, heart disease, cancer, and other health problems.  The sooner we identify and clean up these hot spots, the more people we can save from air pollution’s health effects, misery, and in some cases, premature death.  

To learn more, view the excellent video with commentary by WOEIP founders Margaret Gordon and Brian Beveridge or read the news articles linked below.  For a deeper dive, click the last link to read the entire journal article.

Google collects air pollution data using Street View cars and offers it to scientists, VentureBeat

Google shares Street View pollution maps, Left Lane News

Tracking Air Quality Block By Block, California Healthline

High-Resolution Air Pollution Mapping with Google Street View Cars: Exploiting Big Data, (complete study) Environmental Science and Technology

New study adds more evidence that diesel exhaust can damage your heart

Image: Northwestern University

Even as the current U.S. presidential administration is slashing regulations and funding for reducing air pollution and protecting public health, a new English study found that long-term exposure to diesel exhaust particulate matter at levels far below EPA standards can cause enlargement of the heart, which is associated with increased heart disease and deaths.

“There is strong evidence that particulate matter (PM) emitted mainly from diesel road vehicles is associated with increased risk of heart attack, heart failure, and death” Dr. Nay Aung, Queen Mary University of London

Lead researcher Dr. Nay Aung said that reducing diesel emissions should be a public health priority.  She recommended that people with cardiac and respiratory diseases limit time spent outside during rush hour and that everyone reduce their exposure to diesel exhaust by bicycling and walking on less-polluted routes and as far from traffic as possible.  

 

For more information, see:

Study: Diesel Pollution (PM 2.5) Tied Directly To Heart Damage, CleanTechnica

Diesel pollution linked to heart damage, European Society of Cardiology

Comite Civico and Loma Linda University Medical Center train and empower students to be citizen scientists and monitor air pollution

The Brawley, California community organization Comite Civico Del Valle has tremendous accomplishments under its belt, including installation of a very robust set of fixed air pollution monitors throughout the region, and establishment of the IVAN environmental reporting system, used by residents in the Imperial Valley and communities across the state.

Working with long-time partner Loma Linda University Medical Center. Comite Civil and other partners are now expanding their services. They are training high school students to be citizen scientists, and encouraging residents to install Purple Air monitors to measure air quality in real-time outside of their homes to ensure the air they breathe is safe before engaging in outdoor physical activities.  This will be especially valuable to children and others with asthma. To learn more, check out the resources below and the article that follows.  

In California’s Imperial Valley, Residents Aren’t Waiting for Government to Track Pollution, Yes! Magazine

AIResiliency on Twitter     

I.V.A.N., Identifying Violations Affecting Communities, IVAN Online                                                                                                                                                                 

Read More

Tell EPA how to improve the powerful Environmental Justice tool EJSCREEN

EJScreen is a very powerful tool that puts capabilities previously available only to mapping experts in the hands of environmental justice groups and others.  

If you or your organization have used EJScreen, please let EPA know how they can improve it by filling out the EJScreen User Survey.  Just follow the instructions below.   

To learn more about this great tool, check out the links at the end of this blog post.

Read More
Page 1 of 10412345...102030...Last »