Comite Civico Del Valle honored as a Clean Air Hero

Moving Forward Network member Comite Civico Del Valle is being honored with a Clean Air Heroes award today by the South Coast Air Quality Management District for their ground-breaking IVAN Air Monitoring Network, which consists of 40 community-based air quality monitors in selected locations across the Imperial Valley. The award will be accepted by Humberto Lugo, IVAN Air Community & Environmental Policy Advocate.

Whether you are involved in environmental justice, citizen science, or community empowerment, you should understand the scope and breadth of what CCV has done, and consider what a similar approach could do for your community. 

For more information on the Clean Air Hero Awards and the other winners, check out the SCAQMD press release below. 

SCAQMD to Honor Clean Air Heroes at Annual Clean Air Awards Luncheon

The South Coast Air Quality Management District (SCAQMD) will host its 29th Annual Clean Air Awards today, Oct. 6, honoring individuals and businesses, public agencies and others who are making significant contributions to cleaner air in the Southland. The awards luncheon is being held at The Millennium Biltmore Hotel in Los Angeles. Leslie Lopez, meteorologist for ABC 7 Los Angeles, will emcee the event.

We are always honored to recognize those who are committed to cleaning the air,” said SCAQMD Governing Board Chairman William A. Burke, Ed.D. “These award winners are an inspiring example of hard work, dedication, and perseverance. It’s our hope that others will follow in their footsteps.”

SCAQMD’s 2017 Clean Air Award winners are: 

Award for S. Roy Wilson Memorial Award for Leadership in Government

Congresswoman Karen Bass was re-elected to her fourth term representing the 37th Congressional District in November 2016. She serves on the House Judiciary Committee and the House Committee on Foreign Affairs where she is ranking member of the Subcommittee on Africa. Her local environmental priorities include:

 Expanding park and recreational facilities;
 Ensuring safe extraction of oil in the Inglewood Oil Field;
 Protecting Ballona Creek;
 Implementing groundbreaking environmental laws in California, such as AB 32, the Global Warming Solutions Act;
 Reducing pollution by supporting the expansion of public transportation such as the Crenshaw-LAX Light Rail, the Westside Extension Subway, expanded bus routes; and
 Cleaning up brownfields.

Award for Innovative Clean Air Technology

BYD Inc. is the world’s largest manufacturer of electric vehicles and the largest manufacturer of battery-electric buses in North America. BYD produced the first long-range battery-electric bus and then leveraged its expertise to launch a heavy industries product line of 100 percent electric buses, trucks, forklifts, and freight equipment. BYD’s buses are built in Los Angeles County, produce zero emissions, integrate easily with any existing transit fleet, and meet roughly 80 percent of urban transit system needs with ranges up to 200 miles on a single charge. BYD is also working with the SCAQMD and other partners to demonstrate zero-emission battery-electric class 8 yard trucks and drayage trucks in the ports of Los Angeles and Long Beach.

Chevrolet’s Chevy Bolt EV is the first electric car to top 200 miles on a single charge with a price under $40,000. It was selected as the 2017 Motor Trend Car of the Year as well as Green Car Journal’s 2017 Green Car of the Year.

Southern California Edison’s two Hybrid Enhanced Gas Turbine facilities add batteries and a new control system to traditional “peaker” power plants. SCE is the first utility in the country to integrate General Electric’s existing gas-turbine power generation with battery energy storage in a dynamic new hybrid system, achieving heightened grid efficiency in fulltime service. Additionally, Wellhead Power Solutions provided the selective catalytic reduction and
ammonia system upgrades, expertise in emissions control systems and calibrating low load operations of EGTs.

The hybrid system produces air quality benefits by allowing the turbine to operate in standby mode without combusting fuel, which lowers emissions, while the battery-stored energy enables immediate response to changing energy dispatch needs. The result of these innovations is that greenhouse gases and particulate emissions from each turbine are reduced by roughly 60 percent and demineralized water consumption drops by 2 million gallons per plant each year. This represents a major milestone in the capability to efficiently and reliably manage fluctuating or intermittent sources like wind and solar.

This innovative technology installation, achieved in ground-breaking partnership with SCE, GE and Wellhead, offers potential for other urban areas to achieve more reliable, economically competitive, and environmentally sustainable electricity systems.

Award for Model Community Achievement

The City of South Pasadena is the first city in the nation to be certified as a Green Zone City by the American Green Zone Alliance for using only zero-emission lawn equipment for all city parks, facilities, and medians.

San Bernardino County Transportation Authority implemented a team of compressed natural gas tow trucks for its Freeway Service Patrol (FSP) program. The FSP tow trucks travel on selected San Bernardino County freeways during peak commute hours to assist motorists with car trouble.

Award for Clean Air Education Outreach

For 50 years, the American Lung Association in California, through its offices in Los Angeles, Orange County and the Inland Empire, has educated the public about the impact of air pollution on lung health and worked to build public support and advocacy for clean air and lung health.

The Carson High School ESET Annual Alternative Energy Car Show is an educational and outreach effort that provides students with the opportunity to learn and experience various types of advanced technology and zero-emission vehicles. Approximately 1,500 students and faculty attend each year.

IVAN is an online environmental justice monitoring and reporting tool that connects government agencies and communities to solve environmental problems in seven communities across California including Coachella Valley and Wilmington. In 2016, the program added www.ivanair.org. The website provides air quality data from over 40 air monitoring stations in the Coachella Valley Salton Sea Air Basin including San Diego County. IVAN Air enables
community members to view air quality levels with an easy-to-use air quality index or to register for email alerts in their neighborhood.

Award for Business Leadership in Air Quality

For 50 years Earth Friendly Products has been offering eco-friendly cleaning products manufactured in their carbon-neutral, Leadership in Energy and Environmental Design-certified facilities that utilize platinum zero-waste-certified guidelines and are powered by renewable energy. Chief Executive Officer Kelly Vlahakis-Hanks’ leads the family-owned business that makes more than 200 products at four sustainable manufacturing facilities across the country, including its Cypress headquarters.

Award for Youth Leadership in Air Quality

Starting at age 9 — after suffering from asthma for three years — environmental justice activist Nalleli Cobo from South Los Angeles worked with community members to oppose the operation of an oil production site located two blocks from her school. Now 16, she works with People Not Pozos — a member of Standing Together Against Neighborhood Drilling Los Angeles — to oppose oil drilling in local neighborhoods

.
The Robert M. Zweig, M.D. Memorial Award

Dr. Stanley Galant is medical director of the Breathmobile, a mobile asthma treatment clinic, for the Children’s Hospital of Orange County (CHOC) where he oversees accessible healthcare services for asthma diagnosis, treatment, and education. He is also a clinical professor of pediatrics at the University of California, Irvine. Dr. Galant earned his medical degree from the University of California Medical School, San Francisco, has served at CHOC since 1971, and is board-certified in pediatrics, allergy and immunology. 

SCAQMD is the air pollution control agency for Orange County and major portions of Los Angeles, San Bernardino and Riverside counties.

Don’t miss this excellent video on trucks, air pollution, and public health

The California Cleaner Freight Coalition (CCFC) just sent us a wonderful video, which includes appearances by leaders and volunteers from several MFN member organizations, including Ms. Margaret Gordon of the West Oakland Environmental Indicators Project, Humberto Lugo of Comite Civico Del Valle, Silvia Reyes of the Alliance for Children with Asthma, and Nidia Erceg from the Coalition for Clean Air.

Check the video out! 

To learn more about cleaner freight, sign up today for the free Moving Forward Network 4th International Conference.  Attendees will learn and share knowledge on cleaner freight in a number of sessions, including:

  •  Zero Emission Truck Technology Overview

  • Technology Solutions to Reduce Pollution 

  • Zero-Emissions Policy: Barriers and Opportunities

  • Siemen’s Catenary System Pilot Project site visit

 To learn more about the conference and register, click here or on the image below:

 

 

 

Leonardo DiCaprio joins forces with Comité Cívico Del Valle to expand Salton Sea air quality monitoring

To my knowledge, no organization in the U.S. has achieved as much using citizen science as the Brawley, California community and environmental justice group Comité Cívico Del Valle.

Comité Cívico, working with a network of academic, governmental, and other partners, has built a community-based air quality monitoring system consisting of 40 monitors spread across the sprawling and dangerously polluted Imperial Valley; the IVAN environmental reporting system, which allows citizens to document and report environmental problems; a task force that follows up on the problems that citizens report, and much more.

The result? Empowered, knowledgeable, and engaged residents who are committed to make their community a better and healthier place, and have the tools to do it.

Last week, Comité Cívico gained a new ally  – Leonardo DiCaprio, who announced that his Leonardo DiCaprio Foundation will donate $100,000 to install and operate 20 new air monitors to monitor deadly chemical-laden particulate matter blowing from the rapidly drying Salton sea – perhaps the biggest environmental health challenge the region faces.

Also last week, perhaps inspired by Comité Cívico’s successes, the California State Legislature passed a bill, AB 617, which authorizes the deployment of community air monitoring systems in polluted communities across the state.

Knowledge is power, and Leonardo DiCaprio’s support will help empower the residents of the Imperial Valley to fight for one of the most fundamental human rights – clean air to breathe.  

To learn more about community-based air monitoring, join members of Comite Civico and dozens of other MFN organizations at the FREE 4th International Conference, and check out the references at the end of this post.

Leonardo DiCaprio Foundation gives $100,000 toward monitoring pollution at Salton Sea (Desert Sun)

How community air monitoring projects provide a data-driven model for the future (Environmental Defense Fund)

In California’s Imperial Valley, Residents Aren’t Waiting for Government to Track Pollution, Yes Magazine

Imperial Valley gets an F grade in air quality by American Lung Association, KYMA

Advancing Environmental Justice: A New State Regulatory Framework to Abate Community-Level Air Pollution Hotspots and Improve Health Outcomes (Goldman School of Public Policy)

CALIFORNIA’S AB 617: A NEW FRONTIER IN AIR QUALITY MANAGEMENT…IF FUNDED (Center for Clean Air Policy)

Check out the outstanding speakers and sign up for the free Moving Forward Network international conference!

Come to the free 4th international conference of the Moving Forward Network conference in Carson CA, and network and learn with some of the top environmental justice organizers in the country, plus enjoy exciting and informative speeches by Hong Kong environmental leader Christine Loh, mark! Lopez of East Yard Communities for Environmental Justice, Ed Avol of the University of Southern California Keck School of Medicine, and Fred Potter of the International Brotherhood of Teamsters

To learn more and sign up for the conference, click here or on the image below.

 

 

Hurricane Harvey: Union of Concerned Scientists partners on the ground need help ASAP

Received on Friday from the Union of Concerned Scientists:

Since last week, we at the Union of Concerned Scientists have been working to provide reliable, science-based information about storm preparedness and flood risk to people in the path of Hurricane Harvey’s destruction.

We have worked and developed close relationships in this region, and we believe it’s our human duty to do what we can right now–not just for our partners, supporters, friends, and family in the Gulf Coast but for everyone affected.

For several years, UCS has worked hand in hand with an organization called Texas Environmental Justice Advocacy Services (T.E.J.A.S.). With them, we have analyzed the risks to communities living near industrial facilities and provided information in an accessible form to residents. We brought together science experts and Houston community members to raise awareness about environmental justice issues and provide greater scientific support to efforts to mitigate some of the very same risks people in Houston are facing now as flood waters breach chemical facilities and refineries that line the Gulf Coast.

T.E.J.A.S. is in it for the long haul. Recovery from this disaster will take years, and poor communities and communities of color will bear the greatest burden. So today I’m writing to encourage you to make a donation to support T.E.J.A.S. to help in the recovery efforts.

T.E.J.A.S. has always been clear about the connections between global warming, increased flooding, race, and poverty. Last year we collaborated on a report, Double Jeopardy in Houston(1), showing how people of color and people in poverty live closer to chemical facilities and face the greatest chemical risks. And now, over the past few days more than a million pounds of emissions from the oil refineries and chemical plants that border their communities have been released into the Houston air(2). Meanwhile, the city has shut down its chemical monitoring stations as floodwaters rise, leaving residents without a critical safeguard(3) and explosions at chemical facilities have already been reported(4).

We will continue to see these things happen around the world. Global warming’s consequences are well understood: rising ocean temperatures can cause more intense hurricanes(5), and higher sea levels cause devastating storm surges(6). Even as we speak, massive floods in South Asia have caused more than 1,000 deaths (7). People in many parts of the world are suffering, dying, or losing their homes and businesses because of the effects of global warming. Entire communities are being abandoned because of it.

Please help the people most impacted by Hurricane Harvey and our partner organization in Houston with a donation today. If you are interested in helping other hard hit, under-resourced groups, you can find a list of small scale organizations here.

Thank you for your generosity during this catastrophe. UCS will continue to support our partners engaged in recovery efforts and to ensure that people on the ground have access to the scientific information they need to handle this crisis.

Sincerely,

Kathleen Rest, PhD, MPA

Executive Director

P.S. Feel free pass along these resources:

  1. http://www.ucsusa.org/center-science-and-democracy/connecting-scientists-and-communities/double-jeopardy
  2. https://newrepublic.com/article/144606/harveys-hidden-side-effect
  3. http://www.pbs.org/newshour/rundown/exxonmobil-texas-refineries-damaged-hurricane-harvey-release-thousands-pounds-pollutants-air
  4. https://www.nytimes.com/2017/08/30/us/hurricane-harvey-flooding-houston.html
  5. http://journals.ametsoc.org/doi/abs/10.1175/JCLI-D-15-0129.1
  6. http://www.ucsusa.org/global_warming/science_and_impacts/impacts/hurricanes-and-climate-change.html
  7. https://www.theguardian.com/world/2017/aug/30/mumbai-paralysed-by-floods-as-india-and-region-hit-by-worst-monsoon-rains-in-years

Is your city allowing homes and schools dangerously close to highways & risking the health of you and your children?

Photo Source:MIT

Is your city allowing developers to build schools, housing, and day care centers near busy highways?  Because of the health risks of living close to a highway can be high, this is a very dangerous practice.

Even in Los Angeles, where California law makes it illegal to build a school within 500 free of a busy highway, and officials warn against building homes and daycare centers within that pollution zone, tens of thousands of homes have been built dangerously close to highways in the last few years.

The health risks of traffic-related air pollution are serious. Traffic-related air pollution is known to cause cancer, cardiovascular disease, and to trigger asthma attacks.

In addition, though causality has not been in many cases been proven, traffic-related air pollution been linked to a number of other health problems in adults, some very serious.  Examples include atherosclerosis (hardening of the arteries), Alzheimer’s and Parkinson’s diseases, cognitive decline, reduction in brain volume, congestive heart failure, atrial fibrillation, dementia, cardiovascular diseases, and strokes, high blood pressure, premature death, respiratory disease, and suicide.

In children, traffic-related air pollution has been linked to attention deficit hyperactivity disorder (ADHD), anxiety and depression, autism and autism spectrum disorder, birth defects, brain cancer, impulsivity and emotional problems, insulin resistance & diabetes, leukemia, low birth weight, lupus, lung damage and other respiratory problems, mental illness, obesity, preterm birth, and reduced intelligence.

The cause of these problems?  Traffic-related air pollution contains dozens of toxins, including particulate matter and nitrogen oxides and as many as 40 other toxins from diesel exhaust, and carbon monoxide, toluene, and benzene from automobiles.

How close is too close?  Scientists cannot yet answer that question authoritatively, but there are indications that health risks are very high within 500 feet of a major highway – and even double that distance is not safe. 

For example, studies have found increased respiratory health problems in children who live or go to school within 100 meters (~330 feet) of a busy roadway, with the greatest risks appearing in the first 50 meters (~165 feet).

For adults, those living:

  • close to densely trafficked roads were at a far higher risk of stroke and dementia than those who lived farther away, and

  • within 1,500 feet of the highway were likely to have 14 percent more C-reactive protein in their blood than those who lived more than a half-mile away. Higher amounts of the protein indicate a higher likelihood of a stroke or heart attack.

Are there things you can do to protect yourself even if you can’t move to a home in a safer location?  Yes, the Lancet reports that your government can cut particulate matter in neighboring communities in half by installing noise barriers and vegetation along the highway, and you can reduce the amount that gets into your home by attaching filters to your and air conditioning systems.  These measures won’t solve the problem, but they can reduce the levels of air pollution you inhale, and lower your health risks.

You can make your city safer.  Protect yourself and your community by educating your public officials on the health risks of near roadway pollution and demand that they put measures in place to protect you and your children.  

To learn more about what you can do, come to the free 4th International Moving Forward Network Conference on October 13-14. This is a rare opportunity, so if you would like to help your family and community, sign up today!

For more background on this subject, see these resources:

New evidence of the dangers of living near highways, Boston Globe

Living Near Highways and Air Pollution, American Lung Association

Living Near A Highway Is Terrible For Your Health. 1 In 10 Americans Do It, Think Progress

Living close to a major roadway could increase dementia risk, study says, CNN

The surprising link between air pollution and Alzheimer’s disease, LA Times

New studies cast dark cloud over air pollution, The Lancet

L.A. warns homebuilders, but not residents, of traffic pollution health risks, LA Times

L.A. keeps building near freeways, even though living there makes people sick, LA Times

The invisible hazard afflicting thousands of schools, The Center for Public Integrity

Learn how your group can implement community- based air quality monitoring: article + webinar on August 24

This is an excellent article written by Luis Olmedo and Humberto Lugo of MFN member organization Comite Civico Del Valle, and others.  Check it out and consider – could this be a roadmap for your community group? 

 To learn more, register for the Community-Based Air Monitoring Webinar to be held on Thursday, August 24 from 12:30 to 2:00 p.m. EDT 

 

 Source: Environmental Health Perspectives, July 2017 

The Imperial County Community Air Monitoring Network: A Model for Community-based Environmental Monitoring for Public Health Action

Paul B. English,1 Luis Olmedo,2 Ester Bejarano,2 Humberto Lugo,2 Eduardo Murillo,2 Edmund Seto,3 Michelle Wong,4 Galatea King,4 Alexa Wilkie,4 Dan Meltzer,4 Graeme Carvlin,3 Michael Jerrett,5 and Amanda Northcross6

PDF icon PDF Version (723 KB)

  • Abstract

  • About This Article

    SUMMARY

    The Imperial County Community Air Monitoring Network (the Network) is a collaborative group of community, academic, nongovernmental, and government partners designed to fill the need for more detailed data on particulate matter in an area that often exceeds air quality standards. The Network employs a community-based environmental monitoring process in which the community and researchers have specific, well-defined roles as part of an equitable partnership that also includes shared decision-making to determine study direction, plan research protocols, and conduct project activities. The Network is currently producing real-time particulate matter data from 40 low-cost sensors throughout Imperial County, one of the largest community-based air networks in the United States. Establishment of a community-led air network involves engaging community members to be citizen-scientists in the monitoring, siting , and data collection process. Attention to technical issues regarding instrument calibration and validation and electronic transfer and storage of data is also essential. Finally, continued community health improvements will be predicated on facilitating community ownership and sustainability of the network after research funds have been expended. https://doi.org/10.1289/EHP1772 

Introduction

Communities and regulatory agencies are discovering the utility of small, low-cost environmental sensors that are able to provide real-time information on air pollution (Jiao et al. 2016Snyder et al. 2013Yi et al. 2015). These sensors hold great promise for individuals, communities, schools, and other interested parties by providing timely information that can supplement regulatory data used to reduce toxic exposures and influence environmental health policy and programs. Using these new technologies presents challenges in ensuring scientific validity of the data and visualizing and communicating scientific information in a comprehensible manner.

The Imperial County Community Air Monitoring Network (the Network), one of the largest community-based air monitoring networks in the United States, is an innovative model that addresses these challenges through a community, academic, nongovernmental, and government partnership that integrates knowledge and priorities from community and academic research perspectives. In this community-engaged process, community members play key roles in determining study design, siting and deploying monitors, and data collection. The Network is now producing real-time particulate matter data from 40 low-cost sensors throughout the county.

 Background

 A Community Affected by Air Pollution

Imperial County in southern California is home to a primarily Latino population (82%) and has some of the highest rates of unemployment and poverty in the nation (U.S. Census 2010). The county is mainly desert and agricultural, with a range of air pollution sources—such as field burning, the U.S.–Mexico border crossing, unpaved roads, and various industrial facilities—that contribute to periods lasting longer than 6 months when Imperial County exceeds the California standard for particulate matter (PM) with an aerodynamic diameter of 10 μm or less (PM10) (CARB 2012). Historically, Imperial far surpasses all other California counties as having the highest rates of both emergency hospital visits and hospitalizations for asthma among school-age children (CEHTP 2017). El Centro, California, located in the Imperial Valley, is the city with the fifth-worst air quality in the U.S. (ALA 2016). Exposure to PM10 is associated with increased respiratory disease, decreased lung function, and asthma attacks in susceptible individuals (Anderson et al. 2012). According to the California Air Resources Board, in 2015, the last year in which data were available, the Salton Sea air basin, where Imperial County is located, had 128 d that exceeded the state standards for PM10(https://www.arb.ca.gov/adam/topfour/topfour1.php). This finding means that, for more than one third of the year, residents may be at risk of breathing outdoor air that exceeds the maximum amount of PM that would not harm public health. Even when air quality is within state standards, the health of the population will likely suffer, as arguably no health threshold level exists for PM; for example, an analysis of daily time series data for the 20 largest U.S. cities for 1987–1994 found no threshold for particulate air pollution on daily mortality (Daniels et al. 2000), and Vaduganathan et al. found that increased levels of PM10, even below the current limits set by the European Union, were associated with excess risk for admissions for acute cardiovascular events (Vaduganathan et al. 2016).

 Community Needs for Local-level Air Quality Information

Governmental regulatory air monitors are designed to measure ambient air in communities to ensure that federal and state air-quality standards for the protection of public health are met. However, regulatory monitoring does not have the spatial resolution to provide information to the public in the specific communities where they live, work, and play. Further, regulatory monitors are not designed to report on episodic elevated events (i.e., high-concentration events may be qualified as “exceptional events” and removed from regulatory consideration), which are of concern to communities due to acute health events that occur during peak concentrations.

These limitations play out in Imperial County, where understanding, awareness, and effective response to air pollution trends have been hindered by the fact that there are only five regulatory PM monitors for a county that spans over 4,000 square miles and is home to 175,000 individuals. Residents have noted that these monitors often do not seem to reflect the air quality in their local communities, voiced concerns that the monitoring data are sometimes not displayed during elevated events, and identified the need for more air monitors.

 Opportunities with Next Generation Air Sensor Technology

Recent advances in small portable and personal air monitors or sensors, which are low cost in comparison with conventional monitors, potentially may provide higher temporal and spatial resolution of air quality data than currently exists from regulatory networks (Jerrett et al. 2015Duvall et al. 2016Han et al. 2017Jovašević-Stojanović et al. 2015Volckens et al. 2016). The accessible cost, ease of use, and improving accuracy of these technologies position them to play an important role in efforts by communities and researchers to identify sources and trends in air quality that may inform policies and plans to reduce emissions and exposures. Both personal and community responses to these new data can be important public health actions that may emerge from monitoring.

To address community concerns about air quality, a collaborative of community, academia, nonprofit, and government partners formed the Imperial County Community Air Monitoring Project (the Project). Funded by the National Institute for Environmental Health Science’s Research to Action Program, the Project used an innovative approach to facilitate community participation and decision-making throughout the development and deployment of the Network and to address concerns about scientific validity and sustainability.

 Project Partnerships and a Community Engagement Structure

A crucial component of our approach was to establish an equitable and inclusive community engagement structure that ensured participation at multiple levels throughout the project by various community representatives. The initial step of identification of study partners occurred naturally through a long-standing relationship between Comite Civico del Valle (CCV), a community-based organization in Imperial County, and the California Environmental Health Tracking Program (CEHTP), a program of the nongovernmental Public Health Institute, in collaboration with the California Department of Public Health. The third main study partner, the Seto research group at University of Washington (UW), was identified through relationships with CEHTP, as were other academic partners affiliated with University of California at Los Angeles and George Washington University, who served in an advisory capacity. Distinct roles for the partnering organizations were established from the start. CEHTP provided epidemiological, community engagement, health education, and project-management expertise. UW provided exposure assessment expertise, equipment customization and assembly, and monitor-operation and validation capabilities. CCV provided local community knowledge and relationships and community outreach and organizing expertise, and CCV was ultimately responsible for interfacing with monitor sites and maintenance of the monitoring network. UCLA provided expertise to the community and academic partners on the health effects of air pollution, and George Washington University provided technical consultation on the monitoring of ambient particles.

The project engaged with residents in Imperial County via the establishment of a Community Steering Committee (CSC), recruitment of community participants to help site monitors, and identification of local sites to serve as hosts for the air monitors. The CSC—composed of local leaders and residents concerned about the environment—worked with the Project staff on all aspects of study design and implementation, provided feedback on data communication, and participated in the development of actions to reduce exposures and pollution sources. Government regulatory agencies (in this case, the local air pollution control agency, the California Environmental Protection Agency (California EPA), and the U.S. Environmental Protection Agency (U.S. EPA), were engaged through participation on a Technical Team, composed of local government, academic, and other technical experts. The technical team was convened semiannually to provide technical advice and expertise on the exposure assessment methodologies and calibration results. Government agencies were contacted to provide portable reference monitors for co-location studies, to provide technical assistance to communities and the researchers, and to receive feedback on community needs.

 Defining the Goals for Community Air Monitoring

Components of establishing a community-based air monitoring network are shown in Figure 1. Because it was essential to have an established research question or surveillance need to guide the Project’s activities, this was determined at the start with partners to ensure responsiveness to community needs. The study partners defined broad goals for the Network that included the ability to use the air monitoring data to inform community members about air quality in real time, as well as to generate data that are appropriate for conducting spatial analysis to identify air pollution hot spots and trends. We also continued to refine the goals by incorporating priorities of the CSC and community participants, determined through individual key informant interviews and group discussions to learn about community air quality information needs, uses, sources, and barriers. In turn, these goals provided guidance as we designed the Network and prepared to share monitoring data with the community. In this manner, the study protocol was developed with significant input from the community partner. Furthermore, at that time, the project partners and CSC helped to develop a project-evaluation plan to assess how well these goals were achieved. The evaluation plan included surveys of CSC members, community participants, and other users of the air monitoring data; web analytics; and key informant interviews of project partners.

Flowchart.
Figure 1. Components of establishing a community-based air monitoring network.

 Preparing the Network Equipment and Data Collection Infrastructure

The monitor selected for this study, a modified Dylos DC1700 (Dylos Corporation), was tested in the lab and field for limits of detection, responses to particles of varying composition, ability to accurately size particles, and precision between multiple monitors at multiple field sites with different environmental conditions, such as temperature and humidity. The Dylos is a light-scattering particle counter, and as such, particle counts were converted to mass concentrations to align with health recommendations that are usually based on the latter. Algorithms to convert counts to mass were developed based on co-location of the instruments with government reference instruments in the region, modeling the relationship between counts and mass and using this relationship to estimate mass concentrations. The monitor system included the Dylos particle sensor with four size bins (>0.5 μm, >1.0 μm, >2.5 μm and >10 μm), temperature and relative humidity sensors, and a microcontroller to allow wireless real-time data transfer to the Internet. The monitor components were housed in a box with a cooling fan to sustain optimal sensor performance under Imperial County’s harsh summer conditions (Figure 2).

Photograph.Figure 2. Air monitor system including modified Dylos particle sensor with four size bins (>0.5 μm, >1.0 μm, >2.5 μm and >10 μm), temperature and relative humidity sensors, and a microcontroller.

Monitors were validated and calibrated with reference monitors. In our case, the California EPA participated by providing access to their Calexico, California, site, where they operate federal reference and federal equivalent methods for measuring PM, as well as co-locating portable Beta-attenuation particulate matter monitors at sites that we selected for our community air monitors. Additionally, data collection and data transfer protocols were established, along with quality control plans. This process included addressing issues such as establishment of data feeds, data averaging over time, and data completion checks, as well as formatting data for display and hosting the Web services that allow the public to view the data in real time.

 Designing and Deploying the Network

Monitor siting was accomplished by having community members identify, collect data about, and prioritize potential monitor locations in impacted communities throughout the county. The participants in this prioritization process included the CSC and additional community residents who were recruited for this aspect of the project. To facilitate these community members’ meaningful participation in the monitor siting process, the project team provided basic training in air monitoring science, including explanation of technical criteria (e.g., electrical power availability, wireless connection capability, absence of obstructions, secure location) for monitoring siting. This community-engaged process was used to identify locations for the first 20 monitors. An iterative process was used in which monitoring data from the first set of 20 monitors helped determine sites for the second set. The selection of the second 20 monitor locations was guided by the research staff, with input from the CSC, to ensure that monitors were located in areas where a spatially representative model could be constructed using land use regression techniques (Briggs et al. 1997). CCV played a critical role in recruitment of monitor hosts. CCV staff members were also trained to deploy the monitors and conduct routine maintenance and troubleshooting.

 Producing Community-relevant and Accessible Information

Researchers and the community members discussed which air quality measures were most useful and how the data would be visualized and communicated to the public. The CSC was presented with several options for data presentation to determine the most understandable and useful approach. The existing community website and data platform titled Identifying Violations Affecting Neighborhoods (IVAN) was redesigned and built out to include the data from the Network, called IVAN Air Monitoring (IVAN-Imperial.org/air). The Project staff developed messaging about interpreting the data, information on air quality and health, and technical information on the monitors and pollution levels, which is also posted on the IVAN website.

 Moving Data to Action

Ultimately, the goal of the Network is to provide data and information to community residents to help them engage in individual and community actions to improve health. CCV has extensive knowledge and expertise in outreach, education, advocacy, and organizing. By involving the CSC and other community residents throughout the Project, CCV was more readily able to engage them in ongoing actions than in the past. To support the deployment and utilization of the Network, the Project team developed a two-phase public health action-planning process in which the CSC and other community participants were trained in community action planning strategies, identified and prioritized public health concerns, and developed action plans to address those concerns. With the completion of the Network, the second phase of public health actions will focus specifically on air quality, which may include actions such as outreach to school communities about air quality and health; devising plans for schools to shelter in place during a poor-air-quality days, especially for students with asthma; sharing data trends with local officials to advocate for regulatory action; and training schools with a community monitor to use a flag system to notify the school community about the current air-quality level.

 Ensuring Sustainability

This Network was designed from the outset to be community owned and operated, which will require that the community has the resources, knowledge, and capacity to sustain it. A critical component of supporting an ongoing network is the operation and maintenance of the monitoring equipment, as well as upgrading of software and hardware as needed. As part of ongoing project activities, CCV staff has already received training and assumed responsibility for monitor installation, as well as in troubleshooting monitor hardware and software issues. Furthermore, although technical expertise from a consultant on retainer can provide periodic review to ensure the scientific accuracy of the project, the Network should not have to rely on external technical infrastructure. For example, project data were initially stored on UW data servers but have now been migrated to a cloud service provider so that ownership of the data and the server software may be transferred to the community before the conclusion of the initial grant. This step is critical to ensure sustainability of the program and accessibility of the data after the grant funding period ends. Finally, a key component of sustainability is the continuation of community action planning and community-training activities. The CSC provides an existing structure through which community members can participate directly in the outreach, dissemination, and use of air monitoring data in the broader community. CCV and the CSC can also play a role in community-member mentoring, so that the next generation is interested and prepared to operate the Network.

Who should financially sustain a community-based air monitoring network? Although the community will own the Network and has an interest in its continued operation, they have limited access to funding streams and few available resources. Government agencies may be motivated to maintain and ensure quality data from such projects, as these data help fulfill their mission to provide useful data for community members and can supplement information from regulatory monitors. One example in California is the California Air Resources Board’s Supplemental Environmental Project Policy (available from a file linked at https://www.arb.ca.gov/enf/seppolicy.htm). This policy “allows community-based projects to be funded from a portion of the penalties received during settlement of enforcement actions.” Policies like these can provide some continued support for air monitoring network sustainability.

 Best Practices

Several main themes emerge from this project that can be applied to other settings. First, a clearly defined purpose for monitoring must exist, with an understanding of how data may inform action. Roles and responsibilities of all study partners need to be clear from the onset; if this is done correctly, it will ensure that critical functions are covered and adequately funded, it will manage expectations and avoid miscommunication, and it will identify opportunities for knowledge transfer and capacity building. The community, researchers, and government agencies all have an important role to play, and the project resources should be equitably distributed among them. Scientific information must be presented in an accurate and accessible manner and tailored to the cultural and socioeconomic attributes of the community in question. Data must be understandable and useful for the public to apply in public health campaigns. Next-generation environmental monitors, although relatively easy to install, should not be considered reliable and accurate without rigorous calibration and testing; monitors later may experience technical issues, such as connectivity problems that may affect data completeness. Further, due to dust accumulation on the lens of the particle counter, measurement drift can occur over time; therefore, a regular maintenance schedule is essential. In addition, sustaining a project after dedicated funding ends is difficult; therefore, emphasis on community involvement and training during the project period, as well as novel fundraising and interest from regulatory agencies, can ensure that the project continues to collect useful data into the future.

 Conclusion

Current availability of real-time and neighborhood-scale data on PM levels can be used as an agent of change. Residents are now equipped with data that they can use to better identify when and where residents are safe outside; to change personal behaviors to reduce exposures; and to advocate for policy changes that more aggressively reduce PM sources. Community engagement and uses of citizen science are becoming more common in influencing public health practice (Den Broeder et al. 2016). In Imperial County, we have emphasized the importance of the development of a sustainable air-monitoring network that is community owned and operated and producing data that are valid for community and traditional research. The project has increased community knowledge and capacity about the process required to set up and maintain monitors, and community partners are now empowered to initiate and collect air data for themselves. With this new information, understanding, and capacity, the community is better prepared to engage and collaborate with government around air monitoring and policy than in the past. Increased availability of actionable independent data and technical capacity to operate the hardware and software network components allow residents to have greater control over their lives and enhance the health of their community members.

Acknowledgments

Research reported in this publication was supported by the National Institute of Environmental Health Sciences of the National Institutes of Health under Award Number R01ES022722. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

References

ALA (American Lung Association). State of the Air. 2016. http://www.lung.org/our-initiatives/healthy-air/sota/ [accessed 13 February 2017]

Anderson JO, Thundiyil JG, Stolbach A. 2012. Clearing the air: a review of the effects of particulate matter air pollution on human health. J Med Toxicol 8(2):166–175, PMID: 2219419210.1007/s13181-011-0203-1.

Briggs DJ, Collins S, Elliott P, Fischer P, Kingham S, Lebret E, et al. 1997. Mapping urban air pollution using GIS: a regression-based approach. Int J Geogr Inf Sci 11(7): 699–718, 10.1080/136588197242158.

CARB (California Air Resources Board). 2012. Air Quality Trend Summaries, http://www.arb.ca.gov/adam/trends/trends1.php [accessed 13 February 2017]

CEHTP (California Environmental Health Tracking Program) () 2017. http://www.cehtp.org[accessed 13 February 2017]

Daniels MJ, Dominici F, Zeger SL, Samet JM. 2000. Estimating particulate-matter mortality dose-response curves and threshold levels: an analysis of daily time-series for the 20 largest US cities. Am J Epidemiol 152(5):397–406, 10.1093/aje/152.5.397.

Den Broeder L, Devilee J, Van Oers H, Schuit AJ, Wagemakers A. 2016. Citizen science for public health. Health Promot Int Dec 23. pii: daw086, 10.1093/heapro/daw086.

Duvall RM, Long RW, Beaver MR, Kronmiller KG, Wheeler ML, Szykman JJ. 2016. Performance evaluation and community application of low-cost sensors for ozone and nitrogen dioxide. Kolev SD, ed. Sensors (Basel). 16(10):1698, 10.3390/s16101698.

Han I, Symanski E, Stock TH. 2017. Feasibility of using low-cost portable particle monitors for measurement of fine and coarse particulate matter in urban ambient air. J Air Waste Manag Assoc 67(3):330–340, PMID: 2769028710.1080/10962247.2016.1241195.

Jerrett M, Reid CE, McKone TE, Koutrakis P. 2015. Participatory and ubiquitous sensing for exposure assessment in spatial epidemiology. In Spatial Analysis in Health Geography. Kanaroglou P, Delmelle E, Paez A eds. Farnham, UK:Ashgate Publishing Ltd.

Jiao W, Hagler G, Williams R, Sharpe R, Brown R, Garver D, et al. 2016. Community Air Sensor Network (CAIRSENSE) project: evaluation of low-cost sensor performance in a suburban environment in the southeastern United States. Atmos Meas Tech 9(11):5281, 10.5194/amt-9-5281-2016.

Jovašević-Stojanović M, Bartonova A, Topalović D, Lazović I, Pokrić B, Ristovski Z, et al. 2015. On the use of small and cheaper sensors and devices for indicative citizen-based monitoring of respirable particulate matter. Environ Pollut 206:696–704, 10.1016/j.envpol.2015.08.035.

Snyder EG, Watkins TH, Solomon PA, Thoma ED, Williams RW, Hagler GS, Williams RW, Shelow D, et al. 2013. The changing paradigm of air pollution monitoring. Environ Sci Technol 47(20):11369–11377, 10.1021/es4022602.

U.S. Census. 2010. U.S. Census Bureau Quick Facts. Imperial County. http://www.census.gov/quickfacts/table/PST045215/06025,0636294,00 [accessed 13 February 2017]

Vaduganathan M, De Palma G, Manerba A, Goldoni M, Triggiani M, Apostoli P, Dei Cas L, et al. 2016. Risk of cardiovascular hospitalizations from exposure to coarse particulate matter (PM10) below the European Union Safety Threshold. Am J Cardiol 117(8):1231–1235, PMID: 2697679310.1016/j.amjcard.2016.01.041.

Volckens J, Quinn C, Leith D, Mehaffy J, Henry CS, Miller-Lionberg D. 2016. Development and evaluation of an ultrasonic personal aerosol sampler. Indoor Air. 27(2):409–416, 10.3390/s16101698.

Yi WY, Lo KM, Mak T, Leung KS, Leung Y, Meng ML. 2015. A survey of wireless sensor network based air pollution monitoring systems. Sensors (Basel) 15(12):31392–31427, 10.3390/s151229859
.

Port of Oakland air pollution violates the civil rights of the community – Feds to investigate

 

Photo: CHRIS JORDAN-BLOCH / EARTHJUSTICE

Many of the effects of diesel exhaust and other traffic-related air pollution are known and widely accepted  – including cancer, cardiovascular disease, and triggering of asthma attacks. In addition, studies have shown that the more air pollution a person is exposed to, the more likely they are to suffer from many other maladies and illnesses, including premature birth, autism, Alzheimer’s and Parkinson’s diseases, and cognitive decline.

To top it off, a study of 60 million adults release just a couple of weeks ago shows that Particulate matter air pollution kills many elderly people in the U.S., even at levels the EPA considers ‘safe’.

And study after study has shown that the people most often subjected to high levels of air pollution are disproportionally poor and non-white.  

Residents of West Oakland, California know all of this from first-hand experience.  Residents of this port community, who are predominately black and Latino, are exposed to much more air pollution than richer and whiter residents just a few miles away. West Oakland has 90 times more diesel pollution per square mile on average than the rest of California, resulting in high levels of asthma and other diseases known or suspected to be caused by air pollution.

After fighting for decades to make their communities safer and being ignored all too often by local government, West Oakland residents have made it clear they are not going to take it anymore.  In April, Moving Forward Network members West Oakland Environmental Indicators Project (WOEIP) and Earthjustice teamed up to file a federal civil rights complaint demanding that the Federal government provide them the same levels of protection as people in whiter, richer communities, specifically when making decisions concerning the Port of Oakland the Oakland Army Base redevelopment project.

 “Time and time again, both the city and port have dismissed the consistent input and opposition to their actions from directly impacted West Oakland residents, nearly 80 percent of whom are people of color,” 

The complaint says the city has engaged in a “pattern of neglect and systemic disregard” for the health and well being of West Oakland residents, which will only get worse as the city redevelops the former Oakland Army base. And, it alleges the port’s continuous expansion of maritime activities has consistently failed to incorporate adequate measures to mitigate the elevated pollution levels. The complaint asked that the two Federal agencies that provide the funds and approvals for port projects put measures in place to protect them.  

This week, the agencies sent this letter to the City and Port of Oakland stating that they will investigate the complaint.

For more information, check out the resources below, and stay tuned for more news as it develops.

Community group alleges civil rights violations by the city and port of Oakland in complaint to Federal government, Earthjustice

When pollution discriminates: Feds to investigate alleged civil rights violations in West Oakland, Mercury News

A black community in Oakland says pollution is violating its civil rights, Grist

This army base once drove West Oakland’s economy. Now it drives discrimination, Grist

Particulate matter air pollution kills many elderly people in the U.S., even at levels the EPA considers ‘safe’

A study of over 60 million American seniors recently published in the New England Journal of Medicine shows that long-term exposure to particulate matter air pollution raises the risk of premature death of people over 65 years of age, even at levels well below U.S. Environmental Protection Agency (EPA) standards.  

In urban areas, diesel exhaust is one of the main sources of particulate matter, along with coal-fired power plants.

“We are now providing bulletproof evidence that we breathing harmful air.  It is very strong compelling evidence that currently, the safety standards are not safe enough.”  Francesca Dominici,  co-director of the Harvard Data Science Initiative.

The study, “Air Pollution and Mortality in the Medicare Population”, found that the risks of premature death were highest in men, low-income elders, and blacks, with blacks having mortality risks three times higher than the general population.

The study authors reported that lowering particulate matter air pollution in the U.S. by just 1 microgram per cubic meter would save 12,000 lives per year.  The current EPA annual average health standard for P.M. 2.5 is 12 micrograms per cubic meter.

Joel Schwartz, Harvard University professor of environmental epidemiology and the study’s senior author said “This study shows that although we think air quality in the United States is good enough to protect our citizens, in fact we need to lower pollution levels even further.”

To learn more, check out the excellent NPR audio news report or other references below. 

 Study: Even Low-Level Air Pollution Kills the Elderly, Medpage Today

60-Million-Strong Study Shows Clear Link Between Exposure To Air Pollution & Premature Death, CleanTechnica

Air Pollution and Mortality in the Medicare Population, New England Journal of Medicine

New Harvard Study: There is No “Safe Level” of Exposure to Smog or Particulate Matter. Downwinders at risk

Coalition for Healthy Ports shows dirty diesel trucks are killing residents; demands reinstatement of plan to ban the dirtiest trucks

Photo: Edited image from the Village Voice

The Coalition for Healthy Ports NY NJ, which includes Moving Forward Network members Clean Water Action and the Ironbound Community Corporation, as well as the International Brotherhood of Teamsters union and faculty of the Rutgers School of Public Health, released a very informative report yesterday, and called for the Port Authority of New York and New Jersey to reinstate a planned ban on dirty diesel trucks manufactured before 2007.

Unless ports set healthier standards, economic pressures generally lead to the use of the very oldest and dirtiest trucks on the roads to haul freight from ports to warehouses, and this problem is exacerbated in and around the Ports of New York and New Jersey by a huge amount of trucking through neighborhoods around the ports.  

Diesel exhaust causes a host of diseases, including cancer and strokes, and triggers dangerous and sometimes deadly asthma attacks.  Diesel exhaust has been strongly linked to many other diseases, including many serious neurological problems, though the science is not yet advanced enough to prove causality.  Just this week a study of 60 million Medicaid recipients showed that the more particulate matter a person is exposed to, the more likely they are to die prematurely.  In urban areas, diesel exhaust is the primary source of particulate matter.

The Coalition’s report showed that residents throughout their eight-county study area face an increased risk of premature death due to the failure of the Port Authority of New York and New Jersey to ban the dirtiest diesel trucks, including residents who live far from the port.  For more information, see the original report or news articles linked below.

Complete report

Evaluation of the Port of New York & New Jersey Clean Trucks Program Rollback

 More information on the study and demands to reinstate the ban on old trucks

Coalition Urges Port Authority to enforce old diesel truck ban, NJ.com

NY-NJ under pressure to revive ban on older truck engines, Journal of Commerce (Free subscription required)

 Air pollution and health

There Is No ‘Safe’ Level Of Pollution — Even Small Amounts Lead To Premature Death, Kaiser Health News

Page 1 of 10412345...102030...Last »